Ir al contenido principal

Los científicos explican por qué la sonda espacial Juno no está donde debería


Los especialistas creen que la nave de la NASA sufre una "anomalía de sobrevuelo" y la explicaron en detalle.


El concepto de "anomalía de sobrevuelo" fue acuñado en la década de 1990 para explicar por qué las sondas espaciales modificaban su trayectoria. Este fenómeno repercute en el vuelo por gravedad asistida, es decir, aquel que utiliza la energía gravitatoria de un planeta para aumentar o disminuir la velocidad de las naves.
La anomalía afectó, por ejemplo en la década de 1970, al recorrido de las sondas Pioneer 10 y 11, que fueron detectadas a 386.000 kilómetros de distancia del lugar previsto. Sin embargo, no había una explicación precisa sobre por qué se daba esta situación. Hasta que, ahora, investigadores del Instituto Interdisciplinar de Matemáticas de la Universidad Politécnica de Valencia, en España, pueden haber encontrado una respuesta.
El estudio elaborado por Luis Acedo, José Antonio Moraño y Pedro Piqueras, que fue publicado en el sitio Arxiv, asegura que la sonda espacial Juno también sufre la "anomalía de sobrevuelo" y da una posible explicación en base a un modelo orbital basado en los puntos de máxima aproximación de la sonda a Júpiter.
Según manifestó Acedo, luego de que Juno llegara a ese planeta, el 4 de julio de 2016, se plantearon "desarrollar un modelo orbital independiente" que iba a ser comparado con las trayectorias calculadas por el Laboratorio de Propulsión a Reacción (JPL, por su siglas en inglés) de la NASA. Como la sonda gira cerca de Júpiter, los especialistas esperaban "encontrar allí la anomalía", la cual "demostraría que no se trata solo de un problema particular con los sobrevuelos de la Tierra, sino que es universal".

El nuevo modelo

En su proyecto, los especialistas de la Universidad Politécnica de Valencia también tuvieron en cuenta las fuerzas gravitatorias de marea que ejercen el Sol y los satélites mayores de Júpiter, como Ganímedes, Europa y Calisto, así como el efecto de los armónicos zonales conocidos. Así lograron comprobar que la anomalía afectaba el rumbo de Juno.
Además, determinaron que el efecto tenía una importante componente radial que se debilitaba a medida que la sonda se alejaba del centro del planeta.
"Nuestra conclusión es que esta aceleración anómala también actúa sobre Juno cuando está más cerca de Júpiter. Y esa aceleración es, por lo menos, cien veces mayor que los típicos casos de aceleración anómala en sobrevuelos a la Tierra", explicó Acedo.

Falta información

En ese aspecto, los especialistas insistieron en que la intensidad de la anomalía dependería de la relación entre la velocidad radial de la nave y la de la luz y en que es menor a medida que aumenta la altura sobre Júpiter. Pese a haber encontrado una primera explicación a las "anomalías de sobrevuelo", Acedo reconoció que aún se necesita "más investigación" ya que este fenómeno sigue patrones "muy complejos", por lo que "una sola órbita o una secuencia de órbitas similares, como el caso de Juno", no son suficientes para tener una "idea completa".

Comentarios

  1. Esta información de este tipo de fuentes es genial, aunque en algunos cosas difiero. Sin embargo, Si desean visitar nuestro blog Internet banda ancha bienvenidos sean a ver nuestra info: https://goo.gl/wR46sr

    ResponderEliminar

Publicar un comentario

Entradas más populares de este blog

Un asteroide gigante se acercará a la Tierra en cuestión de horas

El cuerpo celeste, de 1 kilómetro de diámetro, se está dirigiendo hacia el planeta a una velocidad de 140.000 km/h.



El asteroide gigante 2002 AJ129 (276033) se está aproximando a la Tierra a una velocidad aproximada de 140.000 km/h. Su diámetro ronda un kilómetro y representa un peligro enorme en caso de que se aproxime al planeta lo bastante como para una colisión.
Sin embargo, los astrónomos de la NASA, que conocen a este objeto celeste desde enero del 2002, han calculado que nos va a separar del punto más próximo de su trayectoria elíptica "10 veces la distancia que hay entre la Tierra y la Luna". El asteroide alcanzará ese punto el 4 de febrero a las 21:31 GMT.
Los científicos estiman como muy baja la probabilidad de impacto.

Nave espacial capta una imagen espectacular de la Tierra 60 millones de km

La nave OSIRIS-REx, que obtuvo esta fotografía única, se está dirigiendo al asteroide Beenu para tomar muestras de su superficie.



La NASA ha publicado una espectacular imagen de la Tierra y la Luna captada por una nave espacial en su camino hacia un asteroide. La imagen en blanco y negro fue tomada a 63,6 millones de kilómetros de nuestro planeta. La nave espacial OSIRIS-REx, equipada con la cámara NavCam1, se estaba alejando de la Tierra a una velocidad de 8,5 kilómetros por segundo en el momento en el que hizo la foto el pasado 17 de enero. La Tierra aparece como un pequeño círculo brillante en el medio de la imagen, acompañada de su satélite natural a la derecha. La misión OSIRIS-REx fue lanzada en 2016 con el objetivo de tomar muestras del asteroide Bennu, cercano a la Tierra. Se espera que alcance su objetivo en agosto y que tome una muestra en julio de 2020. La muestra será enviada a la Tierra en un contenedor en 2023.

La razón por la que el núcleo interno de la Tierra no debería existir

El proceso mediante el cual, según la teoría más aceptada, se formó el núcleo de nuestro planeta es técnicamente imposible.



Hace aproximadamente mil millones de años, el núcleo interno de la Tierra experimentó un crecimiento acelerado. La bola de metal líquido que se encuentra en el centro de nuestro planeta cristalizó rápidamente debido a la disminución de las temperaturas, y creció constantemente hasta alcanzar un diámetro de aproximadamente 1.220 kilómetros, un tamaño que —se cree— sigue manteniendo hasta nuestros días. Esa es la teoría convencional sobre la creación del núcleo interno del planeta. Sin embargo, un nuevo estudio publicado recientemente en la revista Earth and Planetary Science Letters ha mostrado que es técnicamente imposible que ese proceso tuviera lugar. El estudio, liderado por Steven Hauck, un profesor de la Universidad Case Western Reserve en Ohio (EE.UU.), ha demostrado que el modelo convencional no incluye un detalle importante que convierte esta teoría en de…